
Percolation properties of a three-dimensional random resistor-diode network

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 L285

(http://iopscience.iop.org/0305-4470/14/8/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) L285-L290. Printed in Great Britain 

LETTER TO THE EDITOR 

Percolation properties of a three-dimensional random 
resistor-diode network 

S Redner and A C Brown 
Center for Polymer Studies? and Department of Physics, Boston University, Boston, MA, 
USA 02215 

Received 7 May 1981 

Abstract. We study percolation in a random resistor-diode network on the simple cubic 
lattice. Here the occupied bonds joining nearest-neighbour sites may be either resistor-like, 
transmitting information or connectivity in either direction along a bond, or diode-like, 
transmitting in only one direction. We consider a model in which there exist both positive 
diodes which transmit in the fx, + y  or + z  directions, and negative diodes which transmit 
oppositely. We apply position-space renormalisation group methods to map out the phase 
diagram, and calculate the exponents associated with the phase transitions of this system. 
We find three novel types of transitions due to the presence of the diodes. With only one 
species of diodes and vacancies (unoccupied bonds) present, a directed threshold occurs at a 
critical concentration of diodes. Here an infinite cluster forms which transmits only in the 
direction of the average diode polarisation. A reverse threshold occurs when resistors and 
only one species of diodes exist. At this point the resistors mediate information flow in the 
infinite cluster opposite to the diode polarisation. Finally, with all bond elements present, a 
mixed threshold occurs. At this point, an isotropic infinite cluster exists, but of a qualita- 
tively different character from that occurring at the usual bond percolation threshold. The 
mixed and isotropic transitions are higher-order critical points where diode, resistor and 
vacancy phases become simultaneously critical. 

The percolation problem has been extensively investigated, partly because it is an 
extremely simple system exhibiting the intriguing complexities of second-order phase 
transitions, and also becuse of the many realisations of percolation phenomena in 
nature. (See e.g. Stauffer (1979), Essam (1980) for recent reviews.) Recently, attention 
has focused on developing more general percolation models which are a challenge on a 
fundamental theoretical level, as well as finding applications for percolation in many 
diverse fields. Many such generalisations are contained implicitly in the early work of 
Broadbent and Hammersley (1957). They proposed a percolation process in which 
neighbouring lattice sites may be joined by two randomly occupied directed bonds, one 
‘transmitting’ connectivity or information in one direction, and the other transmitting in 
the reverse direction. In this sense, the directed bonds act as diodes, thus breaking the 
isotropic symmetry of the usual bond percolation problem. 

One special case of this Broadbent-Hammersley percolation process is directed 
bond percolation. For example, on the square lattice, the occupied bonds may transmit 
only upward or to the right. Above the percolation threshold, the infinite cluster can be 
traversed from the lower left to the upper right, but not in the reverse direction. This 
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model has several interesting features not found in isotropic bond percolation. These 
include different critical behaviour (Blease 1977a, b, c, Kertksz and Vicsek 1980), and 
an anisotropic structure for the infinite cluster (Obukhov 1980). Because of the latter 
result, the decay of correlations is characterised by two length scales, one parallel and 
one perpendicular to the directed axis iDhar and Barma 1981, Kinzel and Yeomans 
1981). Directed percolation has been mapped into a Reggeon field theory (Cardy and 
Sugar 1980), and the latter model can be related to Markov processes with absorption, 
branching and recombination (Grassberger and Sundermeyer 1978, Grassberger and 
de la Torre 19791, which are of relevance for describing many chemical and biological 
processes (Schlogl 1972). 

Very recently, there has been an interest in generalising directed bond percolation 
to a situation where the orientation of the diodes is random. In this connection, 
Reynolds (1981) considered a model in which a lattice was randomly occupied by either 
positive diodes (transmitting upward or to the right), or negative diodes (transmitting in 
the opposite direction). In addition, each of these diodes could 'break down' with a 
random probability and transmit in both directions. Redner (1981) treated a similar 
problem of a random resistor-diode network. In this model, each bond may be 
independently occupied by positive or negative diodes, resistors and vacancies (empty 
bonds). In both of these systems, the possibility of continuously varying the diode 
polarisation leads to a rich phase diagram and novel types of phase transitions. These 
include thresholds for the formation of an infinite cluster which transmits information 
unidirectionally, either parallel or antiparallel to the diode polarisation. In addition, 
there exist isotropic thresholds which exhibit higher-order critical behaviour where 
resistor, vacancy and two diode phases become simultaneously critical. 

Because of the richness of this model, we have extended the study of the physical 
properties of the random resistor-diode network to the simple cubic lattice. In this 
Letter, we consider a model system containing positive diodes which transmit in the +x, 
+ y  or +t directions, and negative diodes which transmit in the opposite direction. 
Resistors transmit in either direction, and vacancies are non-transmitting (see figure 
l ( a ) ) .  These elements occur with random probabilities d,, d-, r and o respectively. In 
this model, the diode polarisation points along the (1, 1, 1) axis, and can take any value 
between -1 and +l. When the polarisation per occupied bond equals i l ,  we recover 
directed percolation. On the other hand, when the polarisation equals zero, we have a 

l a )  [ b !  (C! 

Figure 1. A z3 bond cell on the simple cubic lattice. From this we require only the twelve 
bonds shown in ( b )  to calculate the probability of traversing the cell. In ( b ) ,  we represent 
diodes, resistors and vacancies by arrows, full lines and broken lines respectively. Under 
rescaling, the configuration in ( b )  maps to the state shown in (c). 
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random mixture of resistors, vacancies and diodes which have no net nrientational 
order or polarisation. 

We have applied the position-space renormalisation group (PSRG) to study the 
properties of this random resistor-diode network. Our procedure is based on the 
simplest approximation of rescaling a 23 cell of bonds to a single bond, as shown in figure 
l ( b )  (Reynolds et a1 1977). Configurations which traverse from one edge of the cell to 
the other, and vice versa, renormalise to a resistor. Configurations which traverse in 
only one direction renormalise to a diode oriented in the direction of traversing. Finally, 
non-traversing configurations renormalise to a vacancy. The probabilities for each of 
these four cases gives the recursion relations for r’ ,  d: and U ’  respectively. Since there 
are 412 states of the cell, it is not feasible to calculate the recursion relations by hand. 
Accordingly, we have written a computer program which generates each of these 
configurations and tests for the existence of both a path traversing from the top to the 
bottom of the cell, and a path traversing in the opposite direction. From this we assign a 
given cell configuration and its probability to a particular renormalised state. 

The recursion relations thus obtained give the phase diagram shown in hgure 2 in the 
probability space spanned by d,, d-, r and U. The probabilities must sum to unity, hence 
the phase space can be represented by a tetrahedron. For any point inside the 
tetrahedron, the relative amount of the four bond species is determined by the 
perpendicular distances between the point and the four faces of the tetrahedron. The 
distance to any face gives the relative amount of the species labelled at the corner 
opposite the face (see figure 2). There exist two intersecting surfaces of second-order 
transitions which divide the diagram into four phases. These are the ‘vacancy’ phase, in 
which only finite clusters occur; an isotropic ‘resistor’ phase in which information flows 
isotropically within the infinite cluster; and two unidirectional ‘diode’ phases, in which 
information flows only along the direction of diode polarisation. Most of the volume of 
the phase diagram is in the resistor phase. This is in striking contrast to the situation on 

V Isotropic r 

Figure 2. Phase diagram of the random resistor-diode network in the probability space 
spanned by d,, d-, r and U. The fixed points are shown as full circles, and the arrows indicate 
the direction of flow under renormalisation. The two shaded surfaces form a wedge-shaped 
structure, which together with an identical wedge on the opposite side of the symmetry 
plane defined by d ,  = d-, divides the space into four distinct phase regions. The inter- 
section of the two wedges defines a curve which is a line of higher-order critical points where 
the four phases meet. 
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the square lattice, where by duality the vacancy and resistor phases occupy equal 
volumes (Redner 1981). The two second-order surfaces intersect along a curve in the 
symmetry (d, = d-) plane of the phase diagram. This curve is a line of higher-order 
critical points where the four phases become simultaneoiisly identical. From the 
recursion relations, we find ten fixed points. Four of them are trivial, and they are 
associated with a lattice completely filled with only one bond species. Of the remaining 
six fixed points, there are two directed fixed points which signal the onset of an infinite 
cluster transmitting information along the direction of polarisation. These are the 
non-trivial fixed points of the diode-vacancy problem. They occur at d r  (or d ? )  = 
0.2392, U* = 1 - dT and r* = 0. Our value of dT should be compared with the estimate 
d, = 0.383 f 0.003 found by low-density series (Blease 1977a). To find the exponents, 
we calculate the linearised transformation matrix TaB = aa’/ap (a, p = r, d, or d-). At 
the d, directed fixed point, Tap has the value (to four significant figures) 

(1) 
0 7 0 

[1.:89 1 . y 9  0.1299 . 

Thus there is one relevant thermal eigenvalue, 1.859, associated with the eigenvector in 
the d, direction. From this, we obtain a longitudinal correlation length exponent, 
v ~ ~ = l n  2/ln 1.989 = 1.118, describing the divergence of the length along the diode 
polarisation. The two irrelevant eigenvalues are zero, indicating that the flow into the 
fixed point is asymptotically within the plane perpendicular to the d, direction, and is 
isotropic due to the eigenvalue degeneracy. 

There also exist two reverse fixed points which signal the onset of an infinite cluster 
that transmits information opposite to the diode polarisatim. These points occur at 
d, = 0.8699, r* = 1 - d, and U* = 0. At the d, reverse fixed point (positive diodes and 
resistors), Tap equals 

(2) 1 1.839 0.0380 1.802 
[--l;Pe -0.0380 -1.802 . 

0 0 
Again there is one relevant eigenvalue, 1.802, associated with the eigenvector 
(1, -1, 0). This leads to a correlation length exponent of Y, = 1.177 describing the 
divergence of the mean length of paths transmitting opposite to the diode polarisation. 
Also, the situation with the irrelevant eigenvalues is exactly the same as at the directed 
fixed point. 

The isotropic bond percolation threshold occurs at r* = 0.2085, U* = 1 - r* and 
d? = O .  This value of r* ,  also found by previous PSRG studies (Bernasconi 1978, 
Kirkpatrick 1979), is a good approximation to a series estimate of r, = 0.247 f 0.003 
(Sykes et a1 1976). This threshold is a higher-order critical point where the vacancy, 
resistor and two diode phases become simultaneously critical. At this point the matrix 
Tap is 

0 1.839 0.1191 , (3) 
0 0.1191 1.839 O l  

1.958 0 

j 
leading to three relevant eigenvalues. The eigenvalue 1.958 is doubly degenerate, and 
is associated with the eigenvectors (1 ,0 ,0)  and (0, 1, l ) ,  which lie in ‘the d,, d- 
symmetry plane. Thus if we approach the fixed point along any direction in this plane, 
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we find the correlation length diverging isotropically with an exponent of 1.032. The 
value of v is a good approximation to the series expansion estimates of 0.82 * 0.02 (see 
e.g. Essam 1980). The unique eigenvalue 1.720 is associated with an eigenvector 
(0,1, -1). This vector points outside the physical parameter space, and it is not clear 
how to interpret the exponents associated with this direction. 

The most interesting feature of this phase diagram is the fixed point at d: = d? = 
0.1658, r* = U* = 0.0446. This ‘mixed’ threshold signals the onset of an isotropic 
infinite cluster whose connectivity requires both diodes and resistors. Even though the 
infinite cluster is isotropic, there exist two independent associated correlation lengths. 
One is an isotropic length scale as the fixed point is approached in the ‘r’ direction. The 
second length scale is associated with connected paths transmitting opposite to the 
diode polarisation as the fixed point is approached in the ‘d’ direction. As the 
polarisation approaches 0, this length diverges differently from the isotropic length. 
From the linearised recursion relations 

1.064 0.3541 0.3541 
0.9077 1.497 -0.2335 i 0.9077 -0.2335 1.497 

(4) 

we find two relevant eigenvalues, 1.972 and 1.731, associated with the eigenvectors 
(0.7801, -1, -1) and (0, 1, - l ) ,  and one irrelevant eigenvalue of 0.3557 associated 
with (1, -1, -1). The relevant eigenvalues yield an exponent of 1.021 describing the 
divergence of the isotropic length, and an exponent of 1.264 describing the divergence 
of the unidirectional length. The mixed fixed point is a domain of attraction for a curve 
lying within the symmetry plane along which all four phases of the system are 
simultaneously critical. Thus the mixed fixed point is a higher-order critical point in the 
phase diagram. 

In summary, we have studied a generalised percolation problem where lattice bonds 
can be occupied by positive or negative diodes, or by resistors. This system exhibits 
novel critical behaviour, and we have applied the position-space renormalisation group 
to calculate the exponents associated with its phase transitions. We find that there exist 
directed and reverse thresholds where an infinite cluster forms that transmits connec- 
tivity either parallel or antiparallel to the diode polarisation respectively. In addition, a 
new mixed transition occurs. Here an isotropic infinite cluster forms whose connec- 
tivity requires both resistors and randomly oriented diodes. This point, along with the 
usual bond percolation threshold, are higher-order critical points where the vacancy, 
resistor and two diode phases become simultaneously critical. At the mixed fixed point, 
we have found different exponents associated with approaching the fixed point in two 
independent directions. Along one, the diode polarisation is varied at fixed resistor 
concentration and a unidirectional correlation length diverges , while along the other, 
the resistor concentration is varied at fixed polarisation and an isotropic length scale 
diverges. 
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